Geodesic planes in hyperbolic 3-manifolds
نویسندگان
چکیده
In this talk we discuss the possible closures of geodesic planes in a hyperbolic 3-manifold M. When M has finite volume Shah and Ratner (independently) showed that a very strong rigidity phenomenon holds, and in particular such closures are always properly immersed submanifolds of M with finite area. Manifolds with infinite volume, however, are far less understood and are the main subject of this talk. This is based on a joint ongoing work with C. McMullen and H. Oh. Host: Alireza Salehi Golsefidy Tuesday, April 5, 2016 3:00 PM AP&M 6402 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
منابع مشابه
Manifolds With Many Hyperbolic Planes
We construct examples of complete Riemannian manifolds having the property that every geodesic lies in a totally geodesic hyperbolic plane. Despite the abundance of totally geodesic hyperbolic planes, these examples are not locally homogenous.
متن کاملGeodesic planes in the convex core of an acylindrical 3-manifold
Let M be a convex cocompact, acylindrical hyperbolic 3-manifold of infinite volume, and let M∗ denote the interior of the convex core of M . In this paper we show that any geodesic plane inM∗ is either closed or dense. We also show that only countably many planes are closed. These are the first rigidity theorems for planes in convex cocompact 3-manifolds of infinite volume that depend only on t...
متن کاملNon-simple Geodesics in Hyperbolic 3-manifolds
Chinburg and Reid have recently constructed examples of hyperbolic 3manifolds in which every closed geodesic is simple. These examples are constructed in a highly non-generic way and it is of interest to understand in the general case the geometry of and structure of the set of closed geodesics in hyperbolic 3-manifolds. For hyperbolic 3-manifolds which contain an immersed totally geodesic surf...
متن کاملGeodesic Intersections in Arithmetic Hyperbolic 3-manifolds
It was shown by Chinburg and Reid that there exist closed hyperbolic 3-manifolds in which all closed geodesics are simple. Subsequently, Basmajian and Wolpert showed that almost all quasi-Fuchsian 3-manifolds have all closed geodesics simple and disjoint. The natural conjecture arose that the Chinburg-Reid examples also had disjoint geodesics. Here we show that this conjecture is both almost tr...
متن کاملTotally null surfaces in neutral Kähler 4-manifolds
We study the totally null surfaces of the neutral Kähler metric on certain 4-manifolds. The tangent spaces of totally null surfaces are either self-dual (α-planes) or anti-self-dual (β-planes) and so we consider α-surfaces and β-surfaces. The metric of the examples we study, which include the spaces of oriented geodesics of 3-manifolds of constant curvature, are anti-self-dual, and so it is wel...
متن کامل